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Abstract:

This paper firstly presents knowledge representations of Aristotelian modal syllogisms based

on the structure of modal categorical propositions, and proves the validity of the syllogism □

AE◇E-2 by using set theory, modal logic, Aristotelian quantifiers theory and so on, and then

illustrates that the other 30 valid syllogisms are derived from □AE◇E-2. In other words, it

shows that there are reducible relationships between/among them. Owing to Aristotelian

quantifiers (that is, all, some, no, not all) can be mutually defined, as well as so can the

possible modality ( ) and necessary modality (  ), there are reducible relationships

between/among valid Aristotelian modal syllogisms. This formal study not only provides new

insights for knowledge mining in artificial intelligence, but also provides ideas for studying

modern logic.
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Syllogistic reasoning, as a form of reasoning, plays an important role in human society and

human thinking. In natural language, there are many types of syllogisms, such as Aristotelian

syllogisms [1], Aristotelian modal syllogisms [2], generalized syllogisms [3], rational

syllogisms [4], and so on. This paper mainly focuses on Aristotelian modal syllogisms and

discusses the reducible relationships between the Aristotelian modal syllogism AEE-2

and other Aristotelian modal ones. Unless otherwise specified, the following syllogisms refer

to Aristotelian modal syllogisms.

Since Aristotle, scholars such as McCall [5], Thomas [6], Johnson [7], Malink [8], Xiaojun [9]

have mainly studied the validity of Aristotelian modal syllogisms, but there are inconsistency

in their results. This paper aims to study the reducible relationships between/among the

syllogism AEE-2 and other valid syllogisms. Specifically, it utilizes relevant knowledge

to infer the validity of other syllogisms from that ofAEE-2.

2.Knowledge Representation about Aristotelian modal syllogisms

In the following, let r, v and z be lexical variables, D be the domain of lexical variables, Q be

any of the four Aristotelian quantifiers (namely, all, some, no, and not all). Let , ,  and 

be propositions. ‘⊢ ’ shows that  is provable. ‘=def  ’stands for that  is defined by  .

Others are similar.

Aristotelian syllogisms contain the following four types: ‘all rs are zs’, ‘no rs are zs’, ‘some rs

are zs’, and ‘not all rs are zs’, which can be respectively expressed as follows: all(r, z), no(r,

z), some(r, z), and not all(r, z). They are respectively noted as Proposition A, E, I and O.

Aristotelian modal syllogisms are obtained by adding modalities to Aristotelian syllogisms,

and they have at least one possible modality (◇) or necessary one () and at most three ones.

For instance, the Aristotelian syllogism AEE-2 adds one □ and one ◇ to obtain the modal

syllogismAEE-2. The modal syllogismAEE-2 denotes ‘all zs are necessarily vs, and

no rs are vs, so no zs are possibly rs’, which can be formalized asall(z, v)no(r, v)◇no(r,

z).

An instance of the Aristotelian modal syllogismAEE-2 is as follows:

Major premise: All fishes are necessarily aquatic animals.

Minor premise: No birds are aquatic animals.
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Conclusion: No birds are possibly fishes.

Let r be the lexical variable for a fish in the domain, v be the lexical variable for an aquatic

animal in the domain, and z be the lexical variable for a bird in the domain. Then, this

example of syllogism can be formalized as all(z, v)no(r, v)◇no(r, z), which can be

abbreviated as □AE◇E-2. The others are similar.

2.1 Relevant Definitions

Definition 1 (inner negation): Q(r, z)=defQ(r, Dz).

Definition 2 (outer negation): (Q)(r, z)=defIt is not that Q(r, z).

Definition 3 (truth value definition):

(3.1) all(r, z) is true just in case RZ is true in any real world.

(3.2) some(r, z) is true just in case R∩Z is true in any real world.

(3.3) no(r, z) is true just in case R∩Z= is true in any real world.

(3.4) not all(r, z) is true just in case R⊈Z is true in any real world.

(3.5)all(r, z) is true just in case RZ is true in any possible world.

(3.6)all(r, z) is true just in case RZ is true in at least one possible world.

(3.7)some(r, z) is true just in case R∩Z is true in any possible world.

(3.8)some(r, z) is true just in case R∩Z is true in at least one possible world.

(3.9)no(r, z) is true just in case R∩Z= is true in any possible world.

(3.10)no(r, z) is true just in case R∩Z= is true in at least one possible world.

(3.11)not all(r, z) is true just in case R⊈Z is true in any possible world.

(3.12)not all(r, z) is true just in case R⊈Z is true in at least one possible world.

2.2 Relevant Facts

F1 (inner negation):

(1.1) ⊢all(r, z)no(r, z); (1.2) ⊢no(r, z)all(r, z);
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(1.3) ⊢some(r, z)not all(r, z); (1.4) ⊢not all(r, z)some(r, z).

F2 (outer negation):

(2.1) ⊢not all(r, z)all(r, z); (2.2) ⊢all(r, z)not all(r, z);

(2.3) ⊢no(r, z)some(r, z); (2.4) ⊢some(r, z)no(r, z).

F3 (dual): (3.1) ⊢Q(r, z)Q(z, r); (3.2) ⊢Q(r, z)Q(z, r).

F4 (symmetry): (4.1) ⊢some(r, z)some(z, r); (4.2) ⊢no(r, z)no(z, r).

F5 (subordination):

(5.1) ⊢Q(r, z)Q(r, z); (5.2) ⊢Q(r, z)Q(r, z);

(5.3) ⊢Q(r, z)Q(r, z); (5.4) ⊢all(r, z)some(r, z);

(5.5) ⊢no(r, z)not all(r, z).

According to modal logic [10], generalized quantifier theory [11], the above facts can be

proved.

2.3 Relevant Inference Rules

R1 (subsequent weakening): From⊢() and ⊢() infer ⊢().

R2 (anti-syllogism): From ⊢() infer ⊢().

R3 (anti-syllogism): From ⊢() infer ⊢().

3. Reducible Relationships between the Other 30 Valid Syllogisms and □

AE◇E-2:

The following Theorem 1 is a proof for the validity of the syllogism □AE◇E-2. ‘□AE◇

E-2 □AE◇E-4’ in Theorem 2 indicates that the validity of syllogism □AE◇E-4 can be

inferred from that of the syllogism □ AE◇ E-2. In other words, there is a reducible

relationship between them. The same goes for others.

Theorem 1 (□AE◇E-2):all(z, v)no(r, v)◇no(r, z) is valid.

Proof: According to the above, □AE◇E-2 is a short form of the second figure syllogism
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all(z, v)no(r, v)◇no(r, z). Suppose thatall(z, v) and no(r, v) are true, then ZV is true

at any possible world and R∩V= is true at any real according to Definition (3.5) and (3.3)

respectively. Because all real worlds are possible worlds. It can be seen that R∩Z= is true in

at least one possible world. Therefore, ◇no(r, z) is true in line with Definition (3.10). It

follows that ⊢all(z, v)no(r, v)◇no(r, z) is valid, as required.

Theorem 2: The following 30 valid Aristotelian syllogisms can be deduced just from the

syllogism □AE◇E-2:

(2.1) □AE◇E-2□AE◇E-4

(2.2) □AE◇E-2□AE◇E-4E□A◇E-1

(2.3) □AE◇E-2E□A◇E-2

(2.4) □AE◇E-2□A□II-1

(2.5) □AE◇E-2□A□II-1□A□II-3

(2.6) □AE◇E-2□A□II-1□A□II-3□I□AI-3

(2.7) □AE◇E-2□A□II-1□I□AI-4

(2.8) □AE◇E-2□AE◇O-2

(2.9) □AE◇E-2□AE◇O-2□AE◇O-4

(2.10) □AE◇E-2□AE◇E-4E□A◇E-1E□A◇O-1

(2.11) □AE◇E-2E□A◇E-2E□A◇O-2

(2.12) □AE◇E-2E□A◇E-2E□A◇O-2□A□AI-3

(2.13) □AE◇E-2□AE◇O-2□A□AI-1

(2.14) □AE◇E-2□AE◇O-2□A□AI-1□A□AI-4

(2.15) □AE◇E-2E□I◇O-3

(2.16) □AE◇E-2E□I◇O-3E□I◇O-1

(2.17) □AE◇E-2E□I◇O-3E□I◇O-1E□I◇O-2

(2.18) □AE◇E-2E□I◇O-3E□I◇O-4

(2.19) □AE◇E-2EA◇E-2

(2.20) □AE◇E-2EA◇E-2EA◇E-1

(2.21)□AE◇E-2EA◇E-2EA◇E-1AE◇E-4

(2.22) □AE◇E-2EA◇E-2AE◇E-2

(2.23) □AE◇E-2EA◇E-2EA◇O-2

(2.24) □AE◇E-2EA◇E-2EA◇O-2EA◇O-1

(2.25) □AE◇E-2EA◇E-2EA◇E-1AE◇E-4AE◇O-4

(2.26) □AE◇E-2EA◇E-2AE◇E-2AE◇O-2

(2.27) □AE◇E-2□A□II-1EIO-1
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(2.28) □AE◇E-2□A□II-1EIO-1EIO-3

(2.29) □AE◇E-2□A□II-1EIO-1EIO-3EIO-4

(2.30) □AE◇E-2□A□II-1EIO-1EIO-2

Proof:

[1] ⊢all(z, v)no(r, v)◇no(r, z) (i.e.□AE◇E-2, basic axiom)

[2] ⊢all(z, v)no(v, r)◇no(r, z) (i.e.□AE◇E-4, by [1] and F(4.2))

[3] ⊢all(z, v)no(v, r)◇no(z, r) (i.e.E□A◇E-1, by [2] and F(4.2))

[4] ⊢all(z, v)no(r, v)◇no(z, r) (i.e.E□A◇E-2, by [1] and F(4.2))

[5] ⊢◇no(r, z) all(z, v)no(r, v) (by [1] and R2)

[6] ⊢no(r, z) all(z, v)some(r, v) ( by [5], F(3.2) and F(2.3))

[7] ⊢some(r, z) all(z, v)some(r, v) (i.e.□A□II-1, by [6] and F(2.3))

[8] ⊢some(z, r) all(z, v)some(r, v) (i.e.□A□II-3, by [7] and F(4.1))

[9] ⊢some(z, r) all(z, v)some(v, r) (i.e.□I□AI-3, by [8] and F(4.1))

[10] ⊢some(r, z) all(z, v)some(v, r) (i.e.□I□AI-4, by [7] and F(4.1))

[11] ⊢◇no(r, z)◇not all(r, z) (by F(5.5))

[12] ⊢all(z, v)no(r, v)◇not all(r, z) (i.e.□AE◇O-2, by [1], [11] and R1)

[13] ⊢all(z, v)no(v, r)◇not all(r, z) (i.e.□AE◇O-4, by [12] and F(4.2))

[14] ⊢all(z, v)no(v, r)◇not all(z, r) (i.e.E□A◇O-1, by [3], [11] and R1)

[15] ⊢all(z, v)no(r, v)◇not all(z, r) (i.e.E□A◇O-2, by [4], [11] and R1)

[16] ⊢◇not all(z, r)all(z, v)no(r, v) (by [15] and R2)

[17] ⊢not all(z, r)all(z, v)some(r, v) (by [16], Fact (3.2) and F(2.3))

[18] ⊢all(z, r)all(z, v)some(r, v) (i.e.□A□AI-3, by [17] and F(2.1))

[19] ⊢◇not all(r, z)all(z, v)no(r, v) (by [12] and R2)

[20] ⊢not all(r, z)all(z, v)some(r, v) (by [19], F(3.2) and F(2.3))

[21] ⊢all(r, z)all(z, v)some(r, v) (i.e.□A□AI-1, by [20] and F(2.1))

[22] ⊢all(r, z)all(z, v)some(v, r) (i.e.□A□AI-4, by [21] and F(4.1))

[23] ⊢◇no(r, z) no(r, v)all(z, v) ( by [1] and R3)

[24 ] ⊢no(r, z) no(r, v)◇all(z, v) (by [23], F(3.2) and F(3.1))

[25] ⊢some(r, z) no(r, v)◇not all(z, v) (i.e.E□I◇O-3, by [24], F(2.3) and F(2.2))

[26] ⊢some(z, r) no(r, v)◇not all(z, v) (i.e.E□I◇O-1, by [25] and F(4.1))
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[27] ⊢some(z, r) no(v, r)◇not all(z, v) (i.e.E□I◇O-2, by [26] and F(4.2))

[28] ⊢some(r, z) no(v, r)◇not all(z, v) (i.e.E□I◇O-4, by [25] and F(4.2))

[29] ⊢no(z, v)all(r, v)◇no(r, z) (by [1], F(1.1) and F(1.2))

[30] ⊢no(z, Dv)all(r, Dv)◇no(r, z) (i.e.EA◇E-2, by [29] and Definition 1)

[31] ⊢no(Dv, z)all(r, Dv)◇no(r, z) (i.e.EA◇E-1, by [30] and F(4.2))

[32] ⊢no(Dv, z)all(r, Dv)◇no(z, r) (i.e.AE◇E-4, by [31] and F(4.2))

[33] ⊢no(z, Dv)all(r, Dv)◇no(z, r) (i.e.AE◇E-2, by [30] and F(4.2))

[34] ⊢no(z, Dv)all(r, Dv)◇not all(r, z) (i.e.EA◇O-2, by [30], [11] and R1)

[35] ⊢no(Dv, z)all(r, Dv)◇not all(r, z) (i.e.EA◇O-1, by [34] and F(4.2))

[36] ⊢no(Dv, z)all(r, Dv)◇not all(z, r) (i.e.AE◇O-4, by [32], [11] and R1)

[37] ⊢no(z, Dv)all(r, Dv)◇not all(z, r) (i.e.AE◇O-2, by [33], [11] and R1)

[38] ⊢some(r, z) no(z, v)not all(r, v) (by [7], F(1.1) and F(1.3))

[39] ⊢some(r, z) no(z, Dv)not all(r, Dv) (i.e.EIO-1, by [38] and Definition 1)

[40] ⊢some(z, r ) no(z, Dv)not all(r, Dv) (i.e.EIO-3, by [39] and F(4.1))

[41] ⊢some(z, r ) no(D-v, z)not all(r, Dv) (i.e.EIO-4, by [40] and F(4.2))

[42] ⊢some(r, z ) no(D-v, z)not all(r, Dv) (i.e.EIO-2, by [39] and F(4.2))

The above 30 valid syllogisms have been derived from the valid syllogism □AE◇E-2 by

utilizing relevant definitions, facts, and rules.

4.Conclusion

This paper firstly presents knowledge representations of Aristotelian modal syllogisms based

on the structure of modal categorical propositions, and proves the validity of the syllogism □

AE◇E-2 in Theorem 1 by using set theory, modal logic, Aristotelian quantifiers theory and so

on, and then illustrates that the other 30 valid syllogisms are derived from □AE◇E-2 in

Theorem 2. In other words, it proves that there are reducible relationships between/among the

syllogism and the other 30 valid syllogisms.

This formal study not only provides new insights for knowledge mining in artificial

intelligence, but also provides ideas for studying other kinds of syllogisms, such as rational

syllogisms and generalized modal syllogisms.
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