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Abstract

This paper specifically focuses on the validity of generalized modal syllogism (i.e. AMI-1)

that contains the quantifier ‘most’. By making full use of generalized quantifier theory, modal

logic and set theory, this paper derives 24 valid generalized modal syllogisms based on the

validity of the syllogism AMI-1. This method provides a concise mathematical framework

that contributes to knowledge mining for generalized modal syllogism fragments.

Keywords: generalized modal syllogisms; validity; modality; reducibility

1. Introduction

Syllogistic reasoning plays an important role in both logic and natural language, as

acknowledged by scholars such as Łukasiewicz (1957) and Moss (2008). There are various

types of syllogisms, including Aristotelian syllogisms (Moss, 2010; Long, 2023; Haiping and
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Xiaojun, 2024), Aristotelian modal syllogisms (Malink, 2006; Feifei, 2024), generalized

syllogisms (Murinová and Novák, 2012; Baoxiang, 2024), and generalized modal syllogisms

(Mingwei and Qing, 2024).

Due to the large number of generalized quantifiers in natural language (Xiaojun, 2018) and

few studies on them, this paper specifically studies the generalized modal syllogisms,

particularly those containing the common quantifier ‘most’.

2. Preliminaries

In the following, let l, v and b be lexical variables, and form sets L, V, and B using these

variables. D denotes the domain of lexical variables. Let  ,  ,  and  be well-formed

formulas (abbreviated as wff). The expression ‘  L∩B  ’ denotes the cardinality of the

intersection of the set L and B. ‘⊢ ’ signifies that the wff is provable, and ‘def’ states that 

can be defined by  . ‘’ represents the necessary modality, and ‘◇’ the possible one. The

operators (such as , , , ) in this paper are the common symbols in classical first-order

logic (Barwise, 1977) and set theory (Kunen, 1980).

This paper only studies non-trivial generalized modal syllogisms involving the following 8

quantifiers: all, no, some, not all, most, fewer than half of the, at most half of the, at least half

of the, which are respectively abbreviated as Proposition A, E, I, O, M, F, H and S (Jun and

Mingwei, 2024). They can be respectively expressed as the following: all(l, b), no(l, b),

some(l, b), not all(l, b), most(l, b), fewer than half of the(l, b), at most half of the(l, b), and at

least half of the(l, b). Let Q be any of the above 8 quantifiers, Q its outer quantifier and Q

its inner one.

A generalized modal syllogism is obtained by adding ‘at least one and at most three

non-trivial’ necessary modality ( ) or possible modality (◇) to a generalized syllogism

(Liheng, 2024). Therefore, the generalized modal syllogisms in this paper involve the

following 24 types of propositions: (1) all(l, b), no(l, b), some(l, b), not all(l, b), most(l, b),

fewer than half of the(l, b), at most half of the(l, b), and at least half of the(l, b). (2)all(l, b),

no(l, b), some(l, b), not all(l, b), most(l, b), fewer than half of the(l, b), at most

half of the(l, b), and at least half of the(l, b). (3) ◇all(l, b), ◇no(l, b), ◇some(l, b), ◇not

all(l, b), ◇most(l, b), ◇fewer than half of the(l, b), ◇at most half of the(l, b), and ◇at least

half of the(l, b). The syllogism used as the basis for reasoning in this paper is the generalized
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modal syllogism AMI-1. Its instance is as follows:

Major premise: All millionaires are wealthy.

Minor premise: Most NBA players are necessarily millionaires.

Conclusion: Some NBA players are wealthy.

Let v be a lexical variable that represents a millionaire, b be a lexical variable denoting people

who are wealthy, and l be a lexical variable that stands for a NBA player. Then the above

example can be formalized as all(v, b)most(l, v)some(l, b), which can be abbreviated as

AMI-1. The Others are similar. If not otherwise specified, the following syllogisms refer to

non-trivial generalized modal syllogisms.

3. The Axiomatic System of Generalized Modal Syllogisms

This formalized axiom system is composed of the following: primitive symbols, formation

rules and axioms, etc.

3.1 Primitive Symbols

(1) lexical variables: l, v, b

(2) quantifier: all, most

(3) modality:

(4) operator: ,

(5) brackets: (, )

3.2 Formation Rules

(1) If Q is a quantifier, l and b are lexical variables, then Q(l, b) is a wff.

(2) If  is a wff, then so are  and.

(3) If  and  are wffs, then so is .

(4) The set of all wffs is generated by the above rules.

3.3 Basic Axioms

A1: If  is a valid formula in first-order logic, then ⊢ .

A2: ⊢ all(v, b)most(l, v)some(l, b)(that is, the syllogismAMI-1).
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3.4 Rules of Deduction

Rule 1 (subsequent weakening): From ⊢ () and ⊢ () infer ⊢ ().

Rule 2 (anti-syllogism): From ⊢ () infer ⊢ ().

Rule 3 (anti-syllogism): From ⊢ () infer ⊢ ().

3.5 Semantics

Let (D, ) be a model, in which D, and  be an interpretation, where

(l)=L, L⊆D and L.

(v)=V, V⊆D and V.

(b)=B, B⊆D and B.

(dx)D(x), in which x is l, v or b.

If a wff  is true in  under an interpretation , one can say that , ⊨ .

(S1) , ⊨ all(l, b), just in case, (l)⊆(b), that is L⊆B;

(S2) , ⊨ not all(l, b), just in case, L⊈ B;

(S3) , ⊨ no(l, b), just in case, L∩B=;

(S4) , ⊨ some(l, b), just in case, L∩B;

(S5) , ⊨ most(l, b), just in case, |L∩B|0.5|L|;

(S6) , ⊨ at most half of(l, b), just in case, |L∩B|0.5|L|;

(S7) , ⊨ few than half of(l, b), just in case, |L∩B|0.5|L|;

(S8) , ⊨ at least half of(l, b), just in case, |L∩B|0.5|L|.

If  is true under all interpretations in a model, one can say that  is valid in that model (that

is, ⊨ ). If  is valid in all models, one can say that  is valid (that is, ⊨ ).

3.6 Relevant Definitions

D1: ()def();

D2: ()def ()();

D3: (Q)(l, b)defQ(l, Db)
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D4: (Q)(l, b)def It is not that Q(l, b)

D5:Q(l, b)defQ(l, b)

D6: all(l, b) is true iff LB is true in any real world;

D7: some(l, b) is true iff L∩B is true in any real world;

D8: no(l, b) is true iff L∩B= is true in any real world;

D9: not all(l, b) is true iff L⊈ B is true in any real world;

D10: most(l, b) is true iff L∩B0.5L is true in any real world;

D11:most(l, b) is true iff L∩B0.5L is true in any possible world;

The true value definitions of other quantifiers can be given similarly.

3.6 Relevant Facts

Fact 1(Inner Negation):

(1.1) ⊢ all(l, b)no(l, b);

(1.2) ⊢ no(l, b)all(l, b);

(1.3) ⊢ some(l, b)not all(l, b);

(1.4) ⊢ not all(l, b)some(l, b);

(1.5) ⊢ most(l, b)fewer than half of the(l, b);

(1.6) ⊢ fewer than half of the(l, b)most(l, b);

(1.7) ⊢ at least half of the(l, b)at most half of the (l, b);

(1.8) ⊢ at most half of the(l, b)at least half of the (l, b).

Fact 2(Outer Negation):

(2.1) ⊢ all(l, b)not all(l, b);

(2.2) ⊢ not all(l, b)all(l, b);

(2.3) ⊢ no(l, b)some(l, b);

(2.4) ⊢ some(l, b)no(l, b);

(2.5) ⊢ most(l, b)at most half of the(l, b);
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(2.6) ⊢ at most half of the(l, b)most(l, b);

(2.7) ⊢ fewer than half of the(l, b)at least half of the(l, b);

(2.8) ⊢ at least half of the(l, b)fewer than half of the(l, b).

Fact 3(Symmetry):

(3.1) ⊢ some(l, b)some(b, l);

(3.2) ⊢ no(l, b)no(b, l).

Fact 4 (Dual):

(4.1) ⊢ Q(l, b)Q(l, b);

(4.2) ⊢ Q(l, b)Q(l, b).

Fact 5 (Subordination):

(5.1) ⊢ all(l, b)some(l, b);

(5.2) ⊢ no(l, b)not all(l, b);

(5.3) ⊢ Q(l, b)Q(l, b);

(5.4) ⊢ Q(l, b)Q(l, b);

(5.5) ⊢ Q(l, b)Q(l, b).

The above facts are elementary knowledge in generalized quantifier theory (Peters and

Westerståhl, 2006) and modal logic (Chagrov and Zakharyaschev, 1997), and their proofs are

omitted.

4. The Other Generalized Modal Syllogisms Derived from AMI-1

The following Theorem 1 proves the validity of the syllogism AMI-1. In Theorem 2, the

expression ‘(1) AMI-1MAI-4’ asserts the validity of syllogism MAI-4 deduced from

the validity of syllogism AMI-1, which means that there is reducibility between them. The

others are similar.

Theorem 1 (AMI-1): The generalized modal syllogism all(v, b)most(l, v)some(l, b) is

valid.

Proof: Suppose that all(v, b) and most(l, v) are true, then it is clear that VB is true in any
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real world according to Definition D6, and L∩V0.5L is true in any possible world

according to Definition D11. Due to the fact that a necessary world is also a real world, one

can conclude that L∩V0.5L is true in any real world. And it follows that L∩B is true

in any real world. Thus, it can be seen that some(l, b) in the light of Definition D7, just as

desired.

Theorem 2: The following 24 valid generalized modal syllogisms can be obtained from

AMI-1:

(1) AMI-1MAI-4

(2) AMI-1AEH-2

(3) AMI-1AEH-2AEH-4

(4) AMI-1AEH-2EAH-2

(5) AMI-1EMO-3

(6) AMI-1EMO-3EMO-4

(7) AMI-1EMO-3AMI-3

(8) AMI-1EMO-3AMI-3MAI-3

(9) AMI-1EMO-3AMI-3MAI-3EAH-1

(10) AMI-1EMO-3AMI-3MAI-3EMO-2

(11) AMI-1EMO-3AMI-3MAI-3FAO-3

(12) AMI-1EMO-3AMI-3MAI-3FAO-3AAS-1

(13) AMI-1EMO-3AMI-3MAI-3FAO-3AFO-2

(14) AMI-1EMO-1

(15) AMI-1AMI-1

(16) AMI-1MAI-4MAI-4

(17) AMI-1EMO-3EMO-3

(18) AMI-1EMO-3EMO-4EMO-4

(19) AMI-1EMO-3AMI-3AMI-3

(20) AMI-1EMO-3AMI-3MAI-3MAI-3

(21) AMI-1EMO-3AMI-3MAI-3EMO-2EMO-2

(22) AMI-1EMO-3AMI-3MAI-3FAO-3FAO-3

(23) AMI-1EMO-3AMI-3MAI-3FAO-3AFO-2AFO-2

(24) AMI-1EMO-1EMO-1

Proof:

[1] ⊢all(v, b)most(l, v)some(l, b) (i.e. AMI-1, AxiomA2)

[2] ⊢all(v, b)most(l, v)some(b, l) (i.e.MAI-4, by [1] and Fact (3.1))
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[3] ⊢some(l, b)all(v, b)most(l, v) (by [1] and Rule 2)

[4] ⊢no(l, b)all(v, b)most(l, v) (by [3], Fact (2.4) and Fact (4.1))

[5] ⊢no(l, b)all(v, b)at most half of the(l, v) (i.e. AEH-2, by [4] and Fact (2.5))

[6] ⊢no(b, l)all(v, b)at most half of the(l, v) (i.e. AEH-4, by [5] and Fact (3.2))

[7] ⊢all(l, b)no(v, b)at most half of the(l, v) (by [5], Fact (1.1) and Fact (1.2))

[8] ⊢all(l, Db)no(v, Db)at most half of the(l, v)

(i.e. EAH-2, by [7] and Definition D3)

[9] ⊢some(l, b)most(l, v)all(v, b) (by [1] and Rule 3)

[10] ⊢no(l, b)most(l, v)not all(v, b) (i.e. EMO-3, by [9], Fact (2.1) and Fact (2.4))

[11] ⊢no(b, l)most(l, v)not all(v, b) (i.e. EMO-4, by [10] and Fact (3.2))

[12] ⊢all(l, b)most(l, v)some(v, b) (by [10], Fact (1.2) and Fact (1.4))

[13] ⊢all(l, Db)most(l, v)some(v, Db) (i.e. AMI-3, by [12] and Definition D3)

[14] ⊢all(l, Db)most(l, v)some(Db, v) (i.e.MAI-3, by [13] and Fact (3.1))

[15] ⊢some(Db, v)all(l, Db)most(l, v) (by [14] and Rule 2)

[16] ⊢no(Db, v)all(l, Db)most(l, v) (by [15], Fact (2.4) and Fact (4.1))

[17] ⊢no(Db, v)all(l, Db)at most half of the(l, v)

(i.e. EAH-1, by [16] and Fact (2.5))

[18] ⊢some(Db, v)most(l, v)all(l, Db) (by [14] and Rule 3)

[19] ⊢no(Db, v)most(l, v)not all(l, Db)

(i.e. EMO-2, by [18], Fact (2.1) and Fact (2.4))

[20] ⊢all(l, Db)fewer than half of the(l, v)not all(Db, v)

(by [14], Fact (1.3) and Fact (1.5))

[21] ⊢all(l, Db)fewer than half of the(l, Dv)not all(Db, Dv)

(i.e.FAO-3, by [20] and Definition D3)

[22] ⊢not all(Db, Dv)all(l, Db)fewer than half of the(l, Dv) (by [21] and Rule 2)

[23] ⊢all(Db, Dv)all(l, Db)fewer than half of the(l, Dv)

(by [22], Fact (2.2) and Fact (4.1))

[24] ⊢all(Db, Dv)all(l, Db)at least half of the(l, Dv)

(i.e. AAS-1, by [23] and Fact (2.7))

[25] ⊢not all(Db, Dv)fewer than half of the(l, Dv)all(l, Db) (by [21] and Rule 3)

[26] ⊢all(Db, Dv)fewer than half of the(l, Dv)not all(l, Db)

(i.e. AFO-2, by [25], Fact (2.1) and Fact (2.2))

[27] ⊢no(v, b)most(l, v)not all(l, b) (by [1], Fact (1.1) and Fact (1.3))

[28] ⊢no(v, Db)most(l, v)not all(l, Db) (i.e. EMO-1, by [27] and Definition D3)

[29] ⊢some(l, b)some(l, b) (by Fact (5.5))

[30] ⊢all(v, b)most(l, v)some(l, b) (i.e. AMI-1, by[1], [29] and Rule 1)
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[31] ⊢some(b, l)some(b, l) (by Fact (5.5))

[32] ⊢all(v, b)most(l, v)some(b, l) (i.e.MAI-4, by [2], [31] and Rule 1)

[33] ⊢not all(v, b)not all(v, b) (by Fact (5.5))

[34] ⊢no(l, b)most(l, v)not all(v, b) (i.e. EMO-3, by [10], [33] and Rule 1)

[35] ⊢not all(v, b)not all(v, b) (by Fact (5.5))

[36] ⊢no(b, l)most(l, v)not all(v, b) (i.e. EMO-4, by [11], [35] and Rule 1)

[37] ⊢some(v, Db)some(v, Db) (by Fact (5.5))

[38] ⊢all(l, Db)most(l, v)some(v, Db) (i.e. AMI-3, by [13], [37] and Rule 1)

[39] ⊢some(Db, v)some(Db, v) (by Fact (5.5))

[40] ⊢all(l, Db)most(l, v)some(Db, v) (i.e.MAI-3, by [14], [39] and Rule 1)

[41] ⊢not all(l, Db)not all(l, Db) (by Fact (5.5))

[42] ⊢no(Db, v)most(l, v)not all(l, Db) (i.e. EMO-2, by [19], [41] and Rule 1)

[43] ⊢not all(Db, Dv)not all(Db, Dv) (by Fact (5.5))

[44] ⊢all(l, Db)fewer than half of the(l, Dv)not all(Db, Dv)

(i.e.FAO-3, by [21], [43] and Rule 1)

[45] ⊢not all(l, Db)not all(l, Db) (by Fact (5.5))

[46] ⊢all(Db, Dv)fewer than half of the(l, Dv)not all(l, Db)

(i.e. AFO-2, by [26], [45] and Rule 1)

[47] ⊢not all(l, Db)not all(l, Db) (by Fact (5.5))

[48] ⊢no(v, Db)most(l, v)not all(l, Db) (i.e. EMO-1, by [28], [47] and Rule 1)
Theorem 2 denotes that the other 24 valid generalized modal syllogisms can be deduced from

the validity of syllogism AMI-1. Similarly, more valid syllogisms can be inferred from it.

This indicates that there are reducible relations between/among these syllogisms. Their

validity can be similarly proved as in Theorem 1.

5. Conclusion and FutureWork

This paper firstly proves the validity of AMI-1on the basis of generalized quantifier theory,

modal logic, and set theory. Subsequently, 24 valid generalized modal syllogisms have been

derived from the validity of AMI-1 according to relevant facts and inference rules. This

shows that there are reducible relationships between/among valid generalized modal

syllogisms.
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Undoubtedly, this approach presents a succinct and cohesive mathematical research

framework for the study of other syllogisms. It is hoped that the work contributes to

knowledge mining for generalized modal syllogism fragments.
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