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ABSTRACT

“Color confinement” of quarks is an unsolved problem in physics according to Wikipedia. This is

explicitly resolved in the Scalar Strong Interaction hadron theory SSI here. Using SSI, the mass

difference between charged  and neutral 0 pions is estimated via a “marble” model to be =4.3 MeV,

6.5% off the measured 4.6 MeV, The measured charge radius rm  0.66 fm gives a far too small

classical value e2/rm  2.2 MeV. This large mass difference is mostly tied to the strong interaction

potential between the quarks in their invisible relative space of quarks. The necessary background SSI

material in the Appendix includes a meson mass formula that approximately accounts for ground state

meson spectra, side-stepping “lattice” calculations on computers.

Keywords: scalar strong interaction hadron theory SSI, QCD, standard model, quark and meson

equations of motion, relative space between quarks, hidden variables, confinement potentials in SSI,

mass formula for meson spectra, “marble” model for  , pions  - 0mass difference.

1. INTRODUCTION

The unsolved problem of the “proton radius puzzle” [1] has been explicitly resolved [2] in the Scalar

Strong Interaction Hadron Theory SSI. The unsolved “dark energy problem” [1] has also been

explicitly resolved in SSI [3 Ch 16] and [4].

Turning to the unsolved “color confinement problem” [1], its solution has been briefly sketched in

[3 Sec. 4.3] and [4 Appendix]. This problem will be explained more specifically in Part I below in

view of its half century long existence.
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The so-considered equations of motion for mesons there are then applied to treat the unsolved

problem of the large mass difference m=4.6 MeV [5] between the  and 0mesons. This value far

exceeds the classical charge mass of e2/ rm =2.18 MeV where rm =0.659 fm is the  charge radius [5].

The SSI meson equations in Part I are extended to include a singlet gauge potential combined with

a ”marble” model for  to calculate m. This is treated in Part II.

The Appendix provides the development of the basic SSI meson equations including the mass

formula for ground state meson spectra in agreement with data, rendering “lattice” calculations on

computers unnecessary.

PART I RESOLVING THE ”COLOR CONFINEMENT PROBLEM”

2. Historical Example

Classical mechanics (CM), i. e., Newtonian mechanics with relativistic extension, has worked well

before the atomic era. In atoms, however, the particle energies and angular momenta are much lower.

In this region, CM fails. The last well-known application of CM to atomic phenomena is the Bohr-

Sommerfeld model.

In such low particle energies and angular momenta regions, a new theory, quantum mechanics

(QM), takes over. While one cannot go from CM to QM, which must be created, the reverse is

possible. As the particle energy and angular momenta increase, QM merges into CM.

Here, quantum chromodynamics (QCD) works well at higher energies where it is perturbative;

asymptotic freedom [6], [7] holds and quarks are color confined. As the quark energies decrease,

asymptotic freedom ceases to hold, QCD becomes nonperturbative and confinement cannot be proved.

During the past half century, many attempts have been made to extend such high energy QCD into the

nonperturbative low energy region by means of lattice calculations on powerful computers. Although

there are reported successes, these, unlike [3 Ch 5], have been unable to account for the basic meson

spectra.

Usually, such simple problems are explained analytically. Computer calculations enter later in more

complicated situations. Newton’s equations provide analytical solutions to the planet orbits around the

sun, Computers are helpful when corrections due to interactions with other planets are included. In the

atomic case, hydrogen atom has been accounted for analytically using the Schrödinger-Dirac equations.

As the atoms get heavier and contain more electrons, computers are helpful to deal with the many-

body problems. These took basically place in 3 decades after the inception of QM in the 1920´s.

Based upon analogy to the above case, QCD at higher energies cannot be pushed too far into the

low energy, nonperturbative region. A new theory needs be created for this region, here the Scalar

Strong Interaction hadron theory SSI [8], [3]. It has been successful in accounting for the ground state
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meson spectra in Table A1 below and many other hadronic phenomena like the above-mentioned

proton radius puzzle and dark matter and energy [3 Ch 15-16]. Analogous to the merger of QM to CM,

SSI gives at higher energies rise to a QCD Lagrangian [3 Ch 14].

3. QUARK AND MESON EQUATIONS AND CONFINEMENT IN SSI

The starting point is the van der Waerden equations [9], a transformed form of the Dirac equations

that is manifestly Lorentz covariant and more suitable for relativistic particles. While Dirac´s wave

functions are compatible with the regular representation of the Lorentz group, the van der Waerden

spinors are basis vectors generating the fundamental representation of the SL(2,C) Lorentz group.

When applied to the motion of a quark A at xI interacting with an antiquark B at xII via the potential

VSB, these read [3 (2.1.1)-(2.2.5)]

��
��� ���� �� − ���� �� ��

� �� = �����
� �� (3.1a)

�������
� �� − ���� �� ���� �� = ������� �� (3.1b)

            IbBI
b
BIBbI

b
BsISBI

xxxxgxV 
   2

2
1 (3.2).

Conversely, the antiquark B interacts with the quark A via VSA,

��������
� ��� − ���� ��� ���� ��� = ������� ��� (3.3a)

���
������� ��� − ���� ��� ��

� ��� = �����
� ��� (3.3b)

            IIbAII
b
AIIAbII

b
AsIISAII

xxxxgxV 
   2

2
1 (3.4)

Here, I and II refer to differentiations with respect to xI and xII, respectively. gs2 is the scalar strong

coupling constant for quark-antiquark interaction. m is the quark mass, VSB(xI) is the scalar strong

interaction potential at xI generated by quark B at xII and vice versa for VSA(xII).  and  are the left-

handed and right-handed, respectively, quark spinors and the dotted and undotted spinor indices b, e,

f…run from 1 to 2. The subscripts A and B refer to the quark species.

The corresponding meson wave equations are obtained by multiplying (3.1), (3.2) with (3.3), (3.4).

Mutual interaction between A and B causes the separable product wave functions to become

nonseparable meson wave functions according to

���� �� ��
� ��� → ���

� ��, ��� , ��
� �� ���� ��� → ���

� ��, ��� (3.5)

���� �� ���� ��� → ����� ��, ��� , ��
� �� ��

� ��� → ��� ��, ��� (3.6)

��� ��� ��� �� → �� ��, ��� (3.7)



- 205 -

Here, (3.5) represents the meson wave functions, (3.6) the antidiquark and diquark wave functions and

(3.7) the scalar strong interaction potential between A and B. The above-mentioned multiplication

gives rise to 3  3=9 equations containing the 2 meson wave functions in (3.5) and the interquark

potential (3.7) as well a second group containing 2 quark (3.3), 2 diquark and 2 antidiquark (3.6) wave

functions. Since this second group does not appear in meson equations, they are put to 0. Six of the 9

product equations drop out leaving behind the following 3 coupled meson equations [8], [3 (2.2.4-5)]

��
��� ���������

� ��, ��� + ���� − �� ��, ��� ���
� ��, ��� = 0 (3.8a)

��������
������

� ��, ��� + ���� − �� ��, ��� ���
� ��, ��� = 0 (3.8b)

              IIIabIII
ba

IIIbaIII
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IIImIII
xxxxxxxxgxx ,,,,

4
,

4





    (3.9)

Carry out the transformation [3 (3.1.3a)]

�� = ���
� − ��

�, �� = 1 − �� ��
� + �����

� (3.10)

where am is a real constant. Conventionally, am=1/2 if the quark and antiquark have the same mass.

Since xI and xII are invisible, these masses cannot be measured so that am is a free parameter at this

stage. The meson laboratory coordinate X is observable but the relative coordinate x is a hidden

variable. “Hidden” variable has been proposed by Einstein, Podolsky and Rosen in 1935 and D. Bohm

in 1952 in connection with quantum mechanics, well before the quark era from the 1960´s and the

dominating role it plays in SSI [3].

The interquark potential m depends only upon the distance r=|x| between both quarks. The meson

wave functions on the right side of (3.9) contain the dependence 1/, the inverse of the volume of the

meson wave functions in the laboratory space X. At rest,  and the right side of (3.9) vanishes so

that it reduces to [3 (3.2.8a)],

���� � = 0, � = �/�� 2, �� � = ��/� + ��0 + ��2�2 (3.11)

where the d´s are integration constants. Choosing dm0 and dm2 dh2 [3 (3.2.21)], this term provides a

confining potential that causes the wave functions  and  in (3.8) to take the confined form (A7)

below.

This confinement arises from the 4th order (3.9) and (3.11), which in their turn depend upon the

multiplication of (3.1), (3.2) and (3.3), (3.4) in order to go from the invisible quarks to observable

mesons via (3.10). This is a mathematical result in the hidden relative space x originating from the

scalar quark-antiquark strong interaction potentials VSA and VSB at the quark level in (3.1-4). The last

term in (3.11) in its turn leads to the simple mass formula (A8) which approximately agrees with data

in Table A1.
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If there were no such potentials, the meson equations (3.8) can be decoupled back to the quark

equations (3.1) and (3.3). We would then not exist. That there is a material universe requires that

quarks interact with each other, here via (3.2) and (3.4).

At higher energies, QCD color confinement may enter (end of Sec. 2). The inhomogeneous term on

the right of (3.9) may also eventually enter and affect confinement.

4. CONFINEMENT OF BARYONWAVE FUNCTIONS [3 CH 10]

A ground state baryon consists of a quark interacting with a diquark, which replaces the antiquark in

the treatment of mesons above. The 4th order (3.11) is now replaced by the 6th order [3 (10.2.2a)]. As

these books may not be readily accessible, the main developments can also be seen in the open access

[10],

����� � = 0, �� � = ��/� + ��0 + ��1� + ��2�2 + ��4�4 (4.1)

where the db´s are again integration constants. When applied to data, however, it turns out that db4=0

so that the confining potential has the same form as that for mesons in (3.11), albeit with different

value.

PART II PION  - 0MASS DIFFERENCE

The mass difference between the charged and neutral pions is m=4.5936 MeV [5] and has not

been accounted for in any first principles´ theory. This value far exceeds the classical charge mass of

e2/ rm =2.18 MeV where rm =0.659 fm is the  charge radius [5]. The predicted 0 mass difference

2.54 MeV in Table A1 below, like 2.1 MeV [3 (5.1.2)] used to represent the charge contribution to

meson mass, are both also far less than data 4.6 MeV.

This indicates that the approximate (A8), mentioned near the end of Sec. 3, is incomplete with

respect to electromagnetic corrections to the meson masses. Here, m will be estimated from (3.3-4).

In Sec, 5, a “Marble” model for   is proposed. The SSI meson equations (3.8) are generalized to

include electromagnetic gauge fields as perturbations. The procedure is analogous to similar

generalizations in [3 Ch 6-7]. As these books may not be easily accessible, the main developments can

also be seen in the open access [11]. These are then applied to pions in Sec. 6, where m is estimated.

The results are discussed in Sec. 7 and 8. Some necessary underlying material in SSI are provided in

the Appendix.

5. THE “MARBLE” MODEL FOR  

The pion beta decay  e + e suggests that  and  0 have the same strong interaction, the

mutual interaction of the u and d quarks, irrespective their charges. This strong attraction takes place
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in the relative, “hidden” space x between the quarks separated from the electromagnetic interactions

between quarks in different hadrons in the visible laboratory space X (3.10).

SSI contains both x and X intermixed and the general problems are rather complicated. So far,

only problems containing x and X0, the laboratory time, in the simple form of exp(iE0X0), have been

treated. Here, E0 is the 0 mass and the laboratory space X does not enter.

There is only one data point in this problem, namely rm=0.659 fm [5] in X space. The simplest

assumption is to represent  as a “marble” with this radius evenly filled with a charge e in X space.

Now the measured rm=0.659 fm is generally some mean value of many measurements corresponding

to different marble sizes. Assume that these charge distributions are normally distributed, they are

converted to a “marble” having sharp boundaries with radius Rm= rm /2=0.584 fm [12 (2.1)]. This

leads to a mass difference of 2.47 MeV which is still much less than m.

In the marble model, the form in X mentioned above (A3) is replaced by a step function

(|X| = R) = 1 unit length −3/2 for R<�� and 0 for � ≥ �� (5.1)

while keeping the time dependence exp(iE0X0). The ansatz (A3) is then replaced by

���� �  ���� �  � ��� −��0�0 ����0 �  � ��� −��0�0

���� � ���� �  � ��� −��0�0 ������ �  � ��� −��0�0 (5.2)

where r=|x|. The effect of quark charges, at first for +, can now be introduced via the conventional

minimal substitutions

��
��� → ��

��� + 1
2

������ � , ���
��� → ���

��� − 1
2

������ �

���� � → ���� � + 1
2

����� � � , ������ → ������
��� − 1

2
������ � (5.3)

in (A1). qu =2e/3 and qu =e/3. As there is no magnetic field only the time component A0(X) of the

vector potential enters. In the marble model, A0(X)A0(R) satisfies

�
��

2
�0 � = 4���2 � = 3(����)

��
3 , �0 � = �

2��
3 �2 for R < �� and �

2��
for R�� (5.4)

where  is the charge density in the marble and e is the meson charge. With the introduction of A0(R),

the meson energy E0 in (5.2) becomes E0+E1, where E1 is the effect of the perturbation A0. With these

preliminaries and (3.10), the differential operators in (A1) can be written as

��
��� → ��

��� = �
2

���� �0 + �1 + ���0 � + ���� − �
2��

+ �
��

(5.5a)
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���
��� → ���

��� = �
2
���� �0 + �1 − ���0 � + ���� − �

2��
− �

��
(5.5b)

������ → ������ = �
2

���� �0 + �1 − ���0 � + ����
�

2��
− �

��
(5.5c)

���� � → ���� � = �
2
��� � �0 + �1 + ���0(� + ��� �

�
2��

+ �
��

(5.5d)

Eqs. (A1) with (5.2) now becomes

��
��� ������ � ���

��� − ��
2 − �� � ����0 � = 0 (5.6a)

���� �����0 � ������ − ��
2 − �� � ����� � = 0 (5.6b)

The common factor  � ��� −�(�0 + �1)�0 attached to the �0 and �� , as in (5.2), has been

dropped. The D operators are arranged such that the spinor indices couple to each other sequentially

with the convention that operators on the right side of the wave functions �� � and �0 � operate

backwards towards left on them.

Since the �� and ��� operators now depend also upon the visible laboratory X, they no longer

commute as the � and �� do in (A1). Thus, the order of operation makes difference. For example,

performing the �� operation first followed by ��� in (5.6) will lead to different result from that

obtained by �����.

Following the example of calculation of magnetic moment from the Dirac equation, operate (5.6a)

by ���� � from the left and ������ from the right leads to

���� ���
��� ������ � ���

��������� − ���� � ��
2 − �� � ����0 � ������ = 0 (5.7)

There are now 4 possible combinations:

���� � ��
��� �����0 � ���

��� ������ + ���� � ��
2 − �� � ����0 � ������ = 0 (5.8a)

���� � ��
��� �����0 � ���

��� ������ + ���� � ��
2 − �� � ����0 � ������ = 0 (5.8b)

���� � ��
��� �����0 � ���

��� ������ + ���� � ��
2 − �� � ����0 � ������ = 0 (5.9a)

���� � ��
��� �����0 � ���

��� ������ + ���� � ��
2 − �� � ����0 � ������ = 0 (5.9b)

The operations in the parentheses (…) are performed first followed by those in brackets […] and then

those in the braces … .

To zeroth order, (5.8) is equivalent to (A1) which led to the ground state meson spectra predictions

in Table A1 [3 Ch 5].
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6. FIRST ORDER TERMS AND PREDICTED RESULTS

Our task is to obtain the dependence of the first order E1 on qA0 from (5.8-9). This dependence takes

place in the laboratory space X so that the hidden x dependence can be removed by carrying out the

contraction

��3� gd  0 � 5.8, 5.9 / ��3� �0
2 � (6.1)

Using the Dirac formula

���� � ����� = ��
� �� + ��

�
� � × � (6.2)

the bracketed expressions in (5.8a) and (5.8b) become respectively

��
��� �����0 � ���

��� =

���� − ��
2 − ���� − �0

�1
2

+ �
8��

3 �� − �� �2 + ���� �
2

− ��� − �
2��

3 �� + �� �2 �
��

(6.3a)

��
��� �����0 � ���

��� =

���� − ��
2 − ���� − �0

�1
2

+ �
8��

3 �� − �� �2 + ���� �
2

��� − �
2��

3 �� + �� �2 �
��

(6.3b)

���� = ��3� �0
2 � �� � / ��3� �0

2 � = 0.5361 �eV2 (6.4)

Eqs. (6.3a) and (6.3b) differ only in the triplet term in which �� − �� , just like that between (5.5a)

and (5.5b).

In (6.4), terms linear in /x drop out due to (6.1). Terms containing  are removed via (A5). The

first order terms in (5.8) are collected to singlet terms ��� � (…); the triplet terms ��� � (…) drop out

also due to (6.1). Collecting the first order �1 and q terms, it was found, after some algebra, the mass

differences

m = �1 =− �
��

3
��+��

8 ��
2 −����

+ ��−��
4

�2 = 4.306 MeV for �2(�2)av = ��
2 /2 (6,5a)

m = �1 =− �
��

3 − ��+��
8 ��

2 −����
+ ��−��

4
�2 =− 4.922 MeV for �2(�2)av = ��

2 /2 (6,5b)

for the sequences (5.8a) and (5.8b), respectively. Similarly, (5.9a) and (5.9b) leads to the same results

but with (6.5a)( 6.5b).
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The predicted −4.922 MeV is rejected. The predicted 4.3 MeV is close to the measured value of 4,6

MeV, differing by 7%. The result (6.5a) was derived for + but also holds for   as it depends only

upon the square of the charges. If the R2 in (6.5)  4Rm2, it contributes the usual classical e2/ rm

=2.18 MeV mentioned in the Introduction. This term originates from the Laboratory X and is small

compared to the term  (�� + ��), which originates in the hidden, relative space x.

7. EVALUATION OF THE RESULTS AND IMPLICATIONS

The presence of |X|=R in (6.5) comes from the potential A0(R) in (5.4) and reminds one of that the X

dependence of (5.6) remains not dealt with. /X operating on the step function (5.1) vanishes for R<

Rm and R>Rm but diverges for R=Rm on the surface of the marble. This problem has not been

investigated due to its difficulty. These show that this marble model is not fully compatible with the

basic equations (5.6). Thus, this model can only provide an estimate of the mass difference m, not

an exact prediction. However, this estimate should be rather good because the R2 term, approximated

by its mean value of ��
2 /2 in (6.5), makes up only 6% of m.

m is largely controlled by the strong interaction mav in the hidden space. This large mav is also

responsible for the low pion masses, as is shown beneath Table A2. Further, m depends 94% upon

qu+qd =e/3 only 4% upon the conventional quqd =e in (6.5). This shows that the strong interaction

between the quarks also controls m. Our present electrostatic conception of m is no longer valid.

As it can be seen above Sec. 7, this 4% parts is 8 times smaller and of opposite sign relative to the

classical value e2/Rm. It may also be noted that if the first  sign in (6.5) is changed to +, then (6.5a)

will give 4.306 and (6.5b) +4.922 Mev, respectively. The mean value of 4.922 and 4.306 is 4.6145

Mev, only 0.45% off the measured 4.5936 MeV. This is equivalent to dropping the R2 terms

originating in the X space in (6.5). Only the hidden space part physics contributes; the laboratory space

contribution is averaged out.

If the anti-d quark in (6.5) is replaced by an anti-s quark, it may formally be applied to the kaon

system K  -K0. (6.5) yields a correction of  10 MeV. It is bigger than the predicted 6.1 MeV and

measured 3.93 MeV in Table A1 below. But these values are of the same magnitude and bigger than

those for the pions. A basic difference here is that, while  and 0 have the same quark content and

same strong interaction, as was mentioned in Sec. 5, K and K0 have different quark contents, contains

a heavier s quark and hence perhaps have somewhat different strong interactions. Further, these kaon

masses have already been used there to fix the quark masses in Table A2 and to determine the

predicted values in Table A1 and hence cannot be changed. While  0 due to its small mass has not
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been used for those purposes. Thus, (6.5) cannot be applied to the kaons without additional

investigation. These remarks also apply to the D and B mesons in Table A1.

Eq. (6.5a) gives a far greater value than the phenomenological 2.1 MeV assigned to the charge

contribution to the 0  meson and quark masses in Tables A1 and A2 below. There is presently an

uncertainty in the charge corrections to the strong interaction (A8) in these tables.

8. CONCLUSION

Half century after the advent of “asymptotic freedom” [5, 6], “confinement” has still not been

proven. “Color confinement” is listed by Wikipedia [1] as an unsolved problem in physics. This has

been implicitly resolved in [3 Ch 3-5] and briefly sketched in [3 Sec. 4.3] in SSI. Here, this has been

treated explicitly in Part I.

The equations of motion for mesons given there also led to a mass formula (A8) that approximately

accounts for the ground state meson spectra in Table A1, sidestepping complicated lattice calculations

on computers. The treatment takes place in the invisible relative space between the quark and the

antiquark in which they interact via strong, confining potentials given there. The electrostatic

contributions have been included phenomenologically. These have been given in Part I and the

Appendix.

To treat the electrostatic contributions more formally, the same meson equations are generalized to

include a singlet gauge field caused by the quark charges in Part II. A “marble” model for the charged

 was adopted. This model leads to a - mass difference of m=4.3 MeV, close to the measured

4.6 MeV [5].

The above three topics, Part I, Part II and Appendix are seen to be interconnected and their results

support each other.

Outside the meson sector, SSI can also account for nuclear force [12], dark matter, dark energy and

antigravity in expanding universe [4].

9. ADDENDUM TO REF. 12

In this recent reference, the origin of nuclear force is assigned to the Coulomb attraction between

u(d) quark in a proton and d(u) quark in a neighboring neutron, without providing explicit

experimental support. This is remedied here. Firstly, eq. (3.1) there shows that the deuteron binding

energy 2.2 MeV is correctly estimated; no “strong” force is involved. Since nuclei consist mostly of

such pairs, such an assignment provides the basic mechanism of nuclear bond. As more nucleons are

added in heavier nuclei, the two body force in the deuteron has to be extended to include genuine
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many body interactions. Further, the “quark sharing“ mechanism in §4.1 enters. These have been

estimated to lead to a binding energy of up to 14 MeV per nucleon, of the same magnitude as the

observed maximum of 8.9 MeV.

The deuteron can be disintegrated by a 2.2 MeV photon. Photonfission of the actinides takes place

in the low 10´s MeV. These support the present Coulomb assignment. In SSI, strong u-d binding takes

place inside a nucleon in “hidden relative space”, like x in (3.10) with the antiquark there replaced by a

diquark. This binding prevents the disintegration of nucleon but is of the order of GeV, far too big for

nuclear binding

APPENDIX SSI MESON EQUATIONS AND RESULTS

The equations of motion of mesons (3.8) becomes [3 (2.3.22), (2.4.1)]

��
��� ���

������� ��, ��� − ��
2 − �� ��, ��� ���� ��, ��� = 0 (A1a)

��������������� ��, ��� − ��
2 − �� ��, ��� ���� ��, ��� = 0 (A1b)

mAmB ��
2 = 1

4
�1 + �2

2 (A2)

For free mesons, (3.10) will cause  and  to contain X  dependence in the form of

*(1/)exp(iKXiE0X0) where E0 is the meson mass, K its momentum which 0 in the rest frame. The

normalization volume  in [3 (3.1.5-7, 9)]. This ansatz removes the X dependence. Since the

pions are pseudoscalar, they are represented by the singlets 0 and 0 (A5) below. The vector part of

the wave function  and  representing the vector mesons are dropped. The x dependence part read

[3 (3.1.9), 4 (A6)]

���� � = �����0 � ��� ( ��0�0)

���� � = ������ � ��� ( ��0�0), (A3)

where 0 is the relative energy between the quarks.

The two unknown parameters am and 0 must cancel each other via the relation

�� = 1/2 + �0/0 (A4)

given in [8] and [3 (3.1.10a), 4 (A6)]. During the short life of the pions, 0=0 and am=1/2. For protons

in hydrogen atoms in rarified galactic space, am<1/2 or >1/2 causes the relative energy0 between the

diquark and quark of proton to become dark matter or dark energy, respectively [4], [3 Ch 15-16].
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The interquark strong potential m in (A1) satisfies (3.11), [3 (3.1.14)]. Hence, 0 and 0 are also

functions of r. With these preliminaries, I=xI and II=xII in (A1) can via (3.10) be expressed in

terms of X  and x  and (A1) can be reduced to the pseudoscalar meson radial equation [3 (3.2.3b,

3.2.8a, 3.2.21), Table 5.2]

� + �0
2 4 + �� � − ��

2 �0 � = 0, �0 � =− �0 � (A5)

�� � = ��1/� + ��0 − �ℎ
2�2, ��0 = 0.64113GeV2, �ℎ = 0.07GeV2 (A6)

0 � = 1
�

�00 ��� − �ℎ
2

�2 , �00 = �ℎ
�

3
4 = 0.0577GeV3

2 (A7)

The size <r> of pseudoscalar mesons in the hidden space found using (0 )2 is 5.3 fm, about 73%

greater than the nucleon size of 3.05 fm [3 (12.6 22)], [12 (A17)].

The three d constants in (A6) are originally unknown integration constants in the solution of the 4th

order (3.11). However, (A5) only allows one r dependent term in (A6) for discrete, terminated series

solutions. The dm1 term was chosen first but was later replaced by the dh term which leads to

confinement (A7). (A1) then via (A5) yields the mass formula [3 (5.1.1)]

�� = �� + ��
2 − 4��0 + 8�ℎ � + 3

2 (A8)

where J=0 and 1 refers to pseudoscalar and vector mesons, respectively. The subscripts denote quark

species. (A8) is a purely strong interaction result from the hidden space and is independent of the

quark charges. dm0 and 5 quark masses in Table A2 are to be fixed by 6 pseudoscalar meson masses in

Table A1. (A1) via (A5) then leads to Table A1 and are to be compared with the Em02.1 and Em1 lines

there.

Table A1. Em0 andEm1 are data [5] in MeV. 2.1 MeV is correction due to meson charge [3 (5.1.2)]

assuming the same charge radius for all charged 0 mesons. 2dh =(Em12(Em02.1)2)/4 and has been

taken to be 0.14 GeV2 as an average. The * marked pseudoscalar mesons are used as input to fix the

quark masses shown in Table A2 [3 Table 5.2].

----------------------------------------------------------------

------------------------------------------------------

* 0 *K *K0 D *D0 *Ds
 B *B0 Bs0

Em0 139.57 134.98 493.68 497.61 1869.7 1864.8 1968.4 5279.3 5279.7 5366.9

Em02.1 137.47 134.98 491.58 497.61 1867.6 1864.8 1966.3 5277.2 5279.7 5366.9

(A8) 139.04 137.52 491.86 497.96 1867.3 1864.7 1966.4 5276.9 5279.1 5363.3

 0 K* K*0 D* D*0 Ds* B* B* Bs*0
Em1 775.1 775.1 891.76 895.6 2010.3 2006.9 2112.2 5324.7 5325 5415
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(A8) 761.1 761.1 895.5 898.8 2011.7 2009.2 2104 5329.6 5331.8 5415.2

2dh 0.1453 0.1453 0.1379 0.1386 0.1364 0.1375 0.1467 0.1202 0.1i94 0.1308
----------------------------------------------------------------

------------------------------------------------------
Eq. (A8) values are sensitive to the choice of 2dh. If the chosen 0.14 is smaller by 0.05%, the (A8)

value 139.04 for  will decrease to 137.47 in agreement with data. The large difference between (A8)

and data Em1 for  may be due to its large width. One also sees that the flavor independence of 2dh

holds well despite the large mass differences between the  and the Bs mesons. The predicted -0

mass difference  1.52 MeV is much smaller than data 4.6 MeV and is the subject of Part II.

Table A2. Quark masses and dm0 obtained from data in Table A1

--------------------------------------------------------------------------------
mu (GeV) mdmu ms mc mb dm0 (GeV2)
0.6592 0.00215 0.7431 1.6215 4.7786 0.64113
--------------------------------------------------------------------------------

The relatively large dm0 value nearly balances off the other two positive terms in (A8) for the  ´s

and makes their mass much smaller their vector counterpart, the ´s. As the quark masses increase,

towards the right in Table A1, this term becomes less important such that the B* and B masses differ

insignificantly.

Deviations of the (A8) predictions and data in Table A1 may partly be due to similar mechanism for

m in (6.5a), as was discussed at the end of Sec. 7. The validity of the phenomenological assumption

of 2.1 MeV for the charge contribution to 0 mesons has not been proven. Also, the kaon masses have

been chosen to be inputs in (A8) and are fixed. So, charge corrections to the strong interaction results

(A8) in Tables A1 and A2 are uncertain.

Nevertheless, the relatively good agreement of (A8) with data in Table A1 indicates that lattice

calculations on computers mentioned in Sec. 2 can be avoided.

ERRATUM: “Weyl” should read “van der Waerden” in [12], [2]
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