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Abstract.

Boundary value problems of thermal conductivity on a star graph are considered, inspired by

engineering applications, e.g., heat conduction phenomena in mesh-like structures. Based on the

generalized function method, a unified technique for solving boundary value problems of heat

conduction has been developed. Generalized solutions to transient and stationary boundary value

problems are constructed for several types of boundary conditions at the ends, with the

generalized Kirchhoff conditions at the node. Using the symmetry properties of the Fourier

transform of the fundamental solution, regular integral representations of solutions to boundary

value problems are obtained.

The derived results allow simulation of heat sources of various types, including those involving

singular generalized functions. The employed method of generalized functions enables tackling a

wide class of boundary value problems, including those with local and connected boundary

conditions at the ends of the graph, and various transmission conditions at the node.
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Introduction

With the development of mechanical engineering, complex multi-link rod structures operating

under various thermal conditions began to be actively used. They are widely used in structural

mechanics, mechanical engineering, robotics and many other fields. An urgent scientific and

technical task is to study the thermally stressed state of network systems for various purposes

under dynamic and thermal influences, taking into account their thermoelastic properties under

dynamic and thermal influences, including impact types. This is necessary to analyze the

structural strength and reliability of such objects, determine safe operating modes and prevent

disasters. Mathematical modeling of the thermodynamics of rod structures and the creation of

information technologies based on it is one of the more effective and inexpensive methods for

researching and designing such systems.

Graph theory has wide applications in subjects such as economics, logistics, sociology, optimal

control, and navigation [1,2]. The properties of graphs are also actively used to solve boundary

value problems (BVPs) on network-like structures, e.g., oil pipelines, gas pipelines, and

electrical networks [3-10].

Here boundary value problems of uncoupled thermoelasticity are considered on a star

thermoelastic graph (Fig.1), which can be used to study various mesh structures under conditions

of thermal heating. Based on the generalized function method, a unified technique has been

developed for solving boundary value problems of uncoupled thermoelasticity, typical for

engineering applications. Generalized solutions to nonstationary and stationary boundary value

problems of uncoupled thermoelasticity on a stellar graph are constructed under various

boundary conditions at the ends of the graph and generalized Kirchhoff conditions at its common

node. Regular integral representations of solutions to boundary value problems are obtained in

analytical form. The solutions obtained make it possible to simulate force and heat sources of

various types, including using singular generalized functions.
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Presented here the method of generalized functions (GFM) makes it possible to solve a wide

class of boundary value problems with local and connected boundary conditions at the ends of

the edges of the graph and different transmission conditions at its node.

1. Statement of a boundary value problems on a thermal star graph

We consider an thermal star graph which contains N edges (A0 , A j ) of the length

( 1, 2,..., )jL j N with a common node A0 (Fig. 1). On each edge

 1 : 0j jS x R x L    there is own coordinate system ( , )jx t with the origin at point A0 :

0x  . A temperature ( , )j x t satisfy the heat conduction equation at jS :

2

2 ( , ).j j
j jF x t

t x
 


 

 
 

(1)

Here j is the thermal diffusivity coefficient on the j-th segment, ( , )jF x t describes the action

of heat source, 1 2( ), ( )j jt t  are the temperature in the ends of the j-th edge.

Figure 1. Star graph

The initial conditions at t = 0 for the temperature of a graph are known:

(Cauchy conditions)

0

2 1
0 0

( ,0) ( ), 0 , 0,

(0) , , ( ) ( )

j
j j

j
j

x x x L t

j x C R

 

  

   

   (2)

Here we consider the following boundary value problem (BVP).
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Dirichlet problem. Temperature values are known at the ends of the graph edges: for all

1,...,j N

1
2 2( , ) ( ), 0, ( ) ( ),j j

j jL t t t t C R      (3)

 1 [0, )R t    . The following continuity conditions and generalized Kirchhoff conditions

are specified in the common node 0A of the graph:

1 2
1 1 1 01( ) ( ) ... ( ), 0, (0) ,N jt t t t         (4)

1
11

1
( ) ( ), ( ) ( )

N
j

j
j

q t G t G t L R 


  , (5)

0

1 0

(0)
j

jN

j
j x

G
x



 




 .

Here 1 ( ) (0, )j
jt t  , 1 2

0

( ) , ( )
j

j jj j

x x L

q t q t
x x
 

 

 
 
 

, 0 is initial temperature in the

common node A0.

We must to find the solution of this problem on this star graph.

For solving this problem we use the solutions of BVPs for heat equation on segment.

2. Statement of BVP on a graph edge

At first we construct the solution of BVP on one graph segment to get the equations of

connection between the boundary temperatures and heat flows on the edge of graph.

Let consider ( , )x t on  0,L , which is the solution of heat equation [11]:

2

2 ( , ).F x t
t x
  
 

 
(6)

Initial conditions: the temperature is known at t = 0:
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 0 0( ,0) ( ), ( ) 0x x x C x L      (7)

Here we construct solutions to BVPs with local and associated boundary conditions.

Local boundary conditions:

 
 

1 1 1 1 10

2 2 2 2 2

( ) ( ),

( ) ( ).
x

x L

t G t

t G t

  

  




   


  
(8)

where ,j j  arbitrary constants, ( ), ( ) ( 1,2)
j

j j
x x

t t k j
x





   


are the temperature

and heat flow at ends of the segment in points: 1 20, .x x x x L    ( )jG t are known

function which are integrable functions on 1R :
1

1( ) ( )jG t L R .

We consider general case of boundary conditions on the ends of graph edges:

1 1 1 1 2 1 2 2( ) ( ) ( ) ( ) ( ), 1,2.j j j j jt t t t D t j            (9)

where ,ij ij  are arbitrary constants. Relations (9) contain all classical formulations of heat

BVPs if to take some of constants to be equal zero.

There are initial and boundary conditions which are known:

1 2 1( ) (0, ), ( ) ( , ), ( ) ( ).jt t t L t t C R       

It is assumed that all functions defining boundary conditions also belong to Lebesgue space 1.L

Let us find solutions to BVPs using Generalized Function Method [12].

2.1. Generalized solution of BVPs on an graph segment. Generalized function method.

To determine the solution we consider BVP in the space of generalized functions of slow

growth  2 2ˆ( ) { ( , ), , }S R f x t x t R   [14]. To do this, we introduce a regular generalized

function (we mark it with a cap):

 ( , ), ,ˆ( , ) ,
0,
x t x t D

x t
x D








 
 



where ( , )x t is the solution of BVP, [0, ] [0, )D L    . It can be represented in the form
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ˆ( , ) ( , ) ( ) ( ) ( )x t x t H L x H x H t   .

Here ( )H x is Heaviside step function.

To construct the equation for ˆ( , )x t in 2( )S R , we find generalized derivatives of ˆ( , )x t :

2 1

ˆ
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )H L x H x H t t L x H x H t t x H L x H t

x x
      
     

 
,

2 2

2 12 2

ˆ
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )H L x H x H t q t L x H x H t q t H L x x H t

x x
    
      

 

2 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )t L x H x H t t H L x H t x        ,

0

ˆ
( ) ( ) ( ) ( ) ( ) ( )H L x H x H t x H L x t

t t
    
   

 
,

where  x is singular  - function, ( ) , 1,2.
j

j
x x

q t j
x





 


The equation (6) in 2( )S R has the next form for ˆ( , )x t :

2

2 2 12

2 1 0

ˆ ˆ ˆ ( , ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ).

F x t q t L x H x H t q t H L x x H t
t x

t L x H x H t t x H L x H t x H L x H x t

     

     

 
      

 

      

(10)

Note that the right side of this equation includes all initial and boundary temperature ( )j t and

heat flows ( ) ( )j jt q t  (j=1, 2).

According to the theory of generalized functions [19, 20], the solution of Eq. (10) can be

represented as a convolution of fundamental solution of heat equation (6) with the right-hand

side of this equation:

2 2
ˆ ˆ( , ) ( , ) ( , ) ( ) ( ) ( ) ( , )

t
x t F x t U x t q t H x H t U L x t      

1 2( ) ( ) ( ) ( , ) ( ) ( ) ( ) , ( , )xt t
q t H L x H t U x t t H t H x U L x t        (11)

1 0( ) ( ) ( ) , ( , ) ( ) ( ) ( ) ( , )xt x
t H L x H t U x t x H L x H x U x t       .
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Here ˆ ( , ) ( , ) ( ) ( ) ( )F x t F x t H x H L x H t  , ( , )U x t is the fundamental solution of the heat

equation (1) by ( , ) ( , ) ( ) ( ),F x t x t x t    which decays at  and
x
UtxU



),( .

It has the form [14]:

21( , ) exp( / 4 ) ( )
2

U x t x t H t
t




  . (12)

If ˆ( , )F x t is a regular function, then relation (11) can be represented in the integral form:

( , ) ( ) ( ) ( )x t H L x H x H t   (13)

  2 2
0 0

( ) , ( , ) ( ) ( ) ( ) ( , )
t t

H t d U x y t F y dy H x H t q t U L x d      




        

1 2
0 0

( ) ( ) ( , ) ( ) ( ) ( ) ( ) , ( , )
t t

xH L x H t U x y t q d H x H t t U L x d                

1 0
0 0

( ) ( ) , ( , ) ( ) ( , ) ( ) ( ) ( )
L

x

t

H L x H t U x t d U x y t y H L y H y dy            .

Formula (13) determines the temperature inside a segment by known temperature and heat flows

at its ends and is very useful for engineering applications. However, for correctly posed

boundary value problems, out of 4 boundary functions on the right side of formula (13), only 2

are known. To determine two unknown boundary functions, resolving boundary equations

should be constructed using boundary conditions at the ends of the segment.

2.2. Solving BVP in the space of Fourier transformation in time. To construct the

resolving system of equations on segment, we use Fourier transformation in time:

0

ˆ( , ) F ( , ) ( ) ( ) ( , ) ,

1ˆ( , ) ( , ) .
2

i t

i t

x x t H x H L x x t e dt

x t x e d





   

   









    






(14)
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To define Fourier transform of generalized solution (10) we use the property of Fourier

transform of convolution [13]:

2 0
ˆ( , ) ( , ) ( , ) ( ) ( ) ( ) ( , )

x x
x F x U x x H L x H x U x          

2 1( ) ( ) ( , ) ( ) ( ) ( , )q H x U L x q H L x U x          (15)

2 1( ) ( ) , ( , ) ( ) ( ) , ( , )x xH x U L x H L x U x         .

Here a variable under a sign of convolution shows the convolution only over this variable  *x ,

( , ), ( , )x
U xU x

x
 




. The integral representation of Eq (15) has the form:

( , ) ( ) ( ) ( )x H L x H x H   

 
0

2 0
0

( ) , ( , ) ( ) ( , ) ( )
L L

H x U x y F y dy H x U x y y dy         + (16)

2 1( ) ( ) ( , ) ( ) ( ) ( , )q H x U L x q H L x U x         

2 1( ) ( ) , ( , ) ( ) ( ) , ( , )x xH x U L x H L x U x         .

Fourier transform of Green's function of heat equation is equal to 22

 sin
( , ) ,

2
k x

U x
k




 (17)

where 1 1/4

2
(1 )iik e i 


  

    . It satisfies the equation:

1
2

2 ( ).i
d U U x
dx

 
 

Its derivative has the gap in point x=0 and equal to

sgn, ( , ) cos( )
2x
xU x x 


  ,

1, 0,
sgn

1, 0.
x

x
x


  

There are next symmetry conditions:
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( , ) ( , ),U x U x  
1, ( 0, )
2xU 


   . (18)

We use these properties for solving BVP.

2.3. Resolving equations of boundary value problems. To find unknown boundary

functions, we pass in relation (16) to the limit at 0 , 0:x    

1 00 00
( ) lim (0 , ) ( , ) ( , ) ( ) ( ) ( ) ( , )

x xx x
F x U x x H L x H x U x


        

 
       

2 1( ) ( ) ( 0 , ) ( ) ( ) (0 , )q H x U L q H L x U             

2 1( ) ( ) ( 0 , ) ( ) ( ) , (0 , )x xH x U L H L x U             .

Next, we move the last term to the left side and taking into account the right limit of

, ( , )xU x  at zero (18) . We obtain the next equation on left end of the segment:

1 00 0

2 1 2

1 ( ) ( , ) ( , ) ( ) ( ) ( ) ( , )
2

( ) ( ) ( , ) ( ) (0, ) ( ) ( ) , ( , )

x xx x

x

F x U x x H L x H x U x

q H x U L q U H x U L

     

        

 
     

  

Similarly, we consider the limit at , 0.x L    

2 00

1 1 2

( ) lim ( , ) ( , ) ( , ) ( ) ( ) ( ) ( , )

( ) ( , ) ( ) , ( , ) ( ) ( ) , ( , )

x L x Lx x

x x

L F x U x x H L x H x U x

q U L U L H x U


        

           

 
       

    

We move the last term to the left side, and obtain the second boundary equation:

2 0

1 1

1 ( ) ( , ) ( , ) ( ) ( ) ( ) ( , )
2

( ) ( , ) ( ) , ( , )
x L x Lx x

x

F x U x x H L x H x U x

q U L U L

     

     

 
     

 

Let us formulate the obtained results in the form of this theorem.

Theorem 1. The Fourier time transformants of boundary functions of boundary value problems

(6)-(9) satisfy the system of linear algebraic equations of the form:
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1

1

2 1

2 2

0,5 0 ( )
, ( , ) ( , ) ( )

( ) (0, ), ( , ) ( , )
,

( ) ( , )0,5 0

x

x

U L U L q

QU L U L
q Q L

 
    

     
 

  
  

   

    
     
     

(19)

where

1 00 0

2 0

(0, ) ( , ) ( , ) ( ) ( ) ( ) ( , ) ,

( , ) ( , ) ( , ) ( ) ( ) ( ) ( , ) .

x xx x

x Lx Lx x

Q F x U x x H L x H x U x

Q L F x U x x H L x H x U x

    

    

 



    

    

The resulting system (19) makes possibility to solve BVP for any given two boundary functions

of temperature and heat flow at the ends of a segment of four boundary functions.

To solve all temperature BVPs, it is convenient to consider the extended system of equations in

the form of matrix equation:

( ) ( ) C( )     , (20)

where

31 32 33 34

41 42 43 44

0,5 0 , ( , ) ( , )
, ( , ) ( , ) 0,5 0

( ) ,

x

x

U L U L
U L U L
a a a a
a a a a

   
   



 
 
  
 
 
 

 1 1 2 2( ) ( ), ( ), ( ), ( )B = q q       ,

1 2 3 4C( ) ( (0, ), ( , ), ( ), ( )).Q Q L b b    

The last two equations in the system (20) are determined by boundary conditions at the ends of

the segment, which are known for BVP ((8) or (9)):

33 3431 32 1 2 3

43 4441 42 1 2 4

( ) ( ) ( )
( ) ( ) ( )

a aa a b
a aa a q q b

    
  

      
        

        
. (21)
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We have four equations (20) for four boundary functions. By given coefficients ija and right-

hand side ( )ib  , the solution of linear algebraic system of Eqs (20) has the form:

1B( ) ( ) C( )    , (22)

where 1A is the inverse matrix of ( ) .

So, all boundary functions are defined, therefore, the Fourier transform (15) for solving

the boundary value problem is constructed. Using the inverse Fourier transform (14), we obtain

the original ( , )x t on the segment [0, L].

Let us give as an example the solution of classical BVPs for the heat equation

2.4. Dirichlet problems. In this problem the transformants ( ) ( 1,2)j j   of temperature

at the ends of segment are known. Then boundary conditions (20) take the form:

1 2 13

1 2 24

1 0 0 0( ) ( ) ( )( )
.

0 0 1 0( ) ( ) ( )( )
b

q q b
     

   
         

           
         

(23)

Substituting these coefficients into system (20), we obtain the solution for

determination of unknown heat flow at the ends of the segment:

 1 2 1 2
1( ) ( , ) , ( , ) ( ) 0,5 ( )
( , ) xq Q L U L

U L
       

 
   ,

 2 1 1 2
1( ) (0, ) 0,5 ( ) , ( , ) ( )
( , ) xq Q U L

U L
       

 
    .

2.5. Neumann problems. The heat flows ( ) ( 1,2)jq j   at the ends are known. The

boundary conditions (20) for this problem take the form:

11 2 3

21 2 4

( )0 1 0 0( ) ( ) ( )
( )0 0 0 1( ) ( ) ( )

qb
qq q b

    
  

         
           

          
.

Then
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( )
( ) , 1,2j
j j


 


 


,

where

2 2 2

0,5 , ( , )
, ( , ) 0,5

0,25 0,25cos 0,25(1 cos ) 0,25sin ,

x

x

U L
U L

k L k L k L

 
 

  

    

   

1 2
1

2 1

1 2 2 1

(0, ) ( , ) ( ) , ( , )
( , ) ( , ) ( ) 0,5

0,5 (0, ) ( , ) ( ) , ( , ) (0, ) ( , ) (

x

x

Q U L q U L
Q L U L q

Q U L q U L Q U L q

     
   

         


  



   

   

1 2
2

2 1

2 1 1 2

0,5 (0, ) ( , ) ( )
, ( , ) ( , ) ( , ) ( )

0,5 ( , ) ( , ) ( ) , ( , ) (0, ) ( , ) ( ) .
x

x

Q U L q
U L Q L U L q

Q L U L q U L Q U L q

   
     

         


  



   

Then 1
1

( )( )   



, 2

2
( )( )   




.

2.6. Dirichlet-Neumann problem. The temperature at the left end (x =0) 1( )  and the heat

flow 2( )q  at the right end ( x = L ) of the form (8) are known .

In this case, the boundary conditions (20) have the form:

1 2 13

1 2 24

1 0 0 0( ) ( ) ( )( )
0 0 0 1( ) ( ) ( )( )

b
q q qb
     

  
         

           
         

.

From system (20) we find the unknown boundary values 2( )  and 1( )q  :

 2 1 1 2
1( ) (0, ) 0,5 ( ) ( , ) ( )

, ( , )x
Q U L q

U L
       

 
   ,

 1 2 1 2
1( ) ( , ) , ( , ) ( ) 0,5 ( )
( , ) xq Q L U L

U L
       

 
   .
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Here we especially note that the resolving system of equations (20) makes it possible to solve

any boundary value problems for the heat equation with local conditions and nonlocal linearly

related conditions at the ends of the segment.

3. Algebraic equations for determining

unknown boundary functions on a heat star graph

Let's return to the consideration of Dirichlet problem for heat equation

on a star graph (Fig. 1).

On each segment jL of the graph we have the system of linear algebraic equations for

determining four boundary functions:

1
1

1 1
1

2 2

2

( )
1 0 cos( ) sin( ) ( ) ( )

( ) ( )cos( ) sin( ) 1 0

( )

j

j j
j j

j j
j j

j

kL k kL q F

FkL k kL

q

 

 

  







 
 

                  
 
 

, (24)

where j is the number of the corresponding graph segment, and 1 1( ) 2 (0, )j jF Q  ,

2 2( ) 2 ( , )j jF Q L  . The graph has N segments with one boundary condition at the end of

every segment. Consequently, we have N boundary conditions at the ends of this graph. The next

N rows of matrix A contain the conditions of continuity (3) and Kirchhoff (5) for N segments

whose ends lie at the vertex of the graph A0 . So we write full system in the next matrix form.

Theorem 2 . Resolving system of equations of Dirichlet boundary value problem (4) – (5) on a

heat star graph with N different segments has the form :

( ) ( ) ( )   Α B C , (25)

wher
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1 1
1 1

1

1 1
1 1

1

sin( )
1 0 cos( ) .. 0 0 0 0

sin( )
cos( ) 1 0 .. 0 0 0 0

... ... ... ... .. ... ... ... ...

... ... ... ... .. ... ... ... ...
sin( )

0 0 0 0 .. 1 0 cos( )

sin( )A 0 0 0 0 .. cos( ) 1 0

1 0 0 0 .. 1 0 0 0
1 ... ... ... .. ... ..

N N
N N

N

N N
N N

N

k L
k L

k
k L

k L
k

k L
k L

k
k L

k L
k



 




 



1

. ... ...
1 0 0 0 .. 0 0 0 0
1 0 0 0 .. 0 0 0 0
1 ... ... ... .. ... ... ... ...
1 ... ... ... .. ... ... ... ...
0 0 0 .. 0 0 0 N 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 1 2 1 2 2( ) , , , ,......, , , ,1 1 1 1 N N N N
1 2 1= q q q q    B ,

1 1
1 2 1 2( ) ( (0, ), ( , ),......., (0, ), ( , )),0,0,...,0, ( ))N NQ Q L Q Q L G     C .

Here the matrices have the following dimensions  ( )= ( )mn 4N×4Na A ,

 ( ) = ( )mn 4N×1b B .

The first 2N rows of matrix A contain the resulting system (19) for each edge of this graph. In

matrix A in line (2N+j) in column 1 stays 1, in column

(1+4j) stays the number -1, j =1,…, 2N-1. In last row in column 2+4j, j =0,…, 2N, the value

j stays.

The solution of the system (25) has the form:

1( ) ( ) ( )   B Α C (26)

After determining the unknown nodal and boundary functions on every edge  1 1 2 2, , ,j j j jq q  ,

using formulas (6) for ( , )j x  on j-th edge (j=1,…,N), we determine the trasformants of

temperature of every edges of the graph by use (15), (16):

0( , ) ( , ) ( , ) ( ) ( ) ( ) ( , )j
j j jx x
x F x U x x H L x H x U x          
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2 1( ) ( ) ( , ) ( ) ( ) ( , )j j
j j j jq H x U L x q H L x U x          (27)

2 1( ) ( ) , ( , ) ( ) ( ) , ( , );j j
j j x j j j j xH x U L x H L x U x          

where
 sin

( , ) ,
2

j
j

j j

k x
U x

k



  sgn, ( , ) cos( )

2j x j
j

xU x x 


  ,
2

(1 )j
j

k i



  ,

0 , 1,2,..., .jx L j N  

The original of the solution of BVP are obtained by use (14):

1( , ) ( , ) , 1,2,...,
2

i t
j jx t x e d j N   








  (28)

The boundary value problem on the thermal graph has been solved.

Conclusion

Using the method of generalized functions, boundary value problems of thermal conductivity on

a thermal star graph have been solved, which can be used to study various network-like

structures under conditions of thermal heating (cooling). A unified technique has been developed

for solving various boundary value problems typical for practical applications.

The action of heat sources can be modeled by both regular and singular generalized functions

under various boundary conditions at the ends of the graph edge. The obtained regular integral

representations of generalized solutions make it possible to determine the temperature and heat

flows on each element of the graph, at any point of it, for stationary oscillations with a constant

frequency and in the case of periodic oscillations.

For nonstationary processes, performing the inverse Fourier transform in time, we obtain the

original solution in the original space-time. The construction of the original depends on the

boundary conditions and the type of functions that determine them and should be considered

separately for a specific boundary value problem.

The generalized function method presented here makes it possible to solve a wide class of

boundary value problems with local and connected boundary conditions at the ends of the edges

of the graph and various transmission conditions at its node and can be extended to network



- 55 -

structures of very different types. It distinguishes this method from all others that are used to

solve similar problems.

The work was performed with the financial support of the Science Committee of the Ministry of

Science and High Education of the Republic of Kazakhstan (Grant AP23488145, 2024-2026).
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