
39

Unbiased estimators of two second-order moments of the

covariance matrix

Xuanci Wang1, Wei Yi2, Bin Zhang1,*

1 College of Mathematics and Statistics, Guangxi Normal University, Guilin, Guangxi 541004,

China
2 Xiamen Second Foreign Language School, Xiamen, Fujian 361100, China

wangxc0915@126.com; weiyi2020vv@163.com; binzhang@gxnu.edu.cn

∗Corresponding author: B. Zhang (binzhang@gxnu.edu.cn).

Abstract

The covariance matrix, employed for measuring the linear correlation between variables, plays

a vital role in data analysis, such as statistical prediction and hypothesis testing. When the data

dimension is high, the traditional sample covariance matrix is not an ideal estimator of the

population covariance matrix anymore, resulting in degradation or even inaccuracy of the

second-order moment estimators' performance based on the sample covariance matrix. This

paper studies the unbiased estimators of the second-order moments under complex Gaussian

distribution. The proposed unbiased estimators have better statistical properties and numerical

performance than the existing estimation methods.

Keywords: Covariance matrix, second-order moments, complex Gaussian distribution,

SCIREA Journal of Mathematics

http://www.scirea.org/journal/Mathematics

February 9, 2023

Volume 8, Issue 1, February 2023

https://doi.org/10.54647/mathematics110384



40

unbiased estimators.

I. Introduction

With the wide application of large-scale array technology and the popularization of 5G, the

need for high-dimensional data analysis in fields including communication and information is

increasing[1]–[4]. The following reasons lead to this phenomenon. On the one hand, more

array elements can obtain higher resolution, more vital interference suppression ability, and

longer detection distance. On the other hand, limited by the hardware level and external

environment, it takes a large sample size in the array processing to maintain the corresponding

performance of the device. Nevertheless, in fields such as radar signals, it is often difficult to

match the number of samples with the number of array elements, leading to a

high-dimensional small sample problem in signal statistical analysis. When the sample size is

small, the performance of traditional signal estimation algorithms will rapidly decrease as the

number of dimensions increases. The main reason is that the signal estimation algorithm often

involves the covariance matrix between array elements [5], [6]. In practice, the covariance

matrix is often unknown [7], and it needs to be estimated with limited samples [8]. When the

dimension is low and the sample size is large, the sample covariance matrix is a good estimator

of the population covariance matrix. However, in the case of high-dimensional small samples,

the sample covariance matrix becomes ill-conditioned, even singular. Its error becomes

non-negligible, causing the corresponding algorithm to be unstable or unusable [9], [10]. A

natural processing method uses limited samples to improve the estimation accuracy of the

population covariance matrix, which can improve the algorithm’s performance. Therefore,

estimating the covariance matrix in the case of high-dimensional small samples has received

extensive attention [11], [12]. In practice, people often pay more attention to estimating its

population moment than the covariance matrix itself. For example, when testing the spherical

structure of the covariance matrix, estimating the second-order population moment is the key

to constructing the test statistics [13], [14]. Besides, the theoretical optimal shrinkage

coefficient needs to be brought into the second-order moment estimator of the covariance

matrix to become usable [15].
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Since the sample covariance matrix is no longer suitable for high-dimensional small-sample

situations, it is no longer reliable to estimate the second-order moment based on the sample

covariance matrix. When the dimension tends to infinity, the sample-based second-order

moment estimator of the covariance matrix is not a consistent estimate of the second-order

population moment. Meanwhile, it is a biased estimator. Therefore, people need to find a better

second-order moment estimator. One way is to find a better covariance matrix estimator and

then calculate the second-order moment. We then obtain the second-order moment estimation.

The estimators obtained by this method are usually consistent, but it takes effort to guarantee

unbiasedness. Another method directly estimates the existing second-order moment based on

the covariance matrix. The unbiased second-order moment estimation is obtained by

correcting the deviation. When the data comes from the real number field, the existing

literature has obtained the unbiased estimation of the second-order population moment [16].

However, the data often comes from the complex number field in signal processing. Its

distribution is different from the case of the real number field [17]. In this paper, we assume

that the data obeys the complex Gaussian distribution and study the unbiased estimator of the

second-order moment of the covariance matrix.

II. Estimation of the second-order moment under complex Gaussian

distribution

Let the random variable px C obey the complex Gaussian distribution  ,  CG   , where

 ,  are the expectation and population covariance matrix respectively,

1 2,  , ,    p
nx x x C is an available sample with a sample size of n . Commonly used

second-order moments include    2 2,  tr tr  , where ()tr is the trace of the matrix. They

play an important role in multivariate statistical theory. In [18], the ratio in the likelihood of

covariance matrix sphericity test is
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In [19], the optimal parameter in shrinkage estimation can be expressed as
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Note that B is a p-order symmetric Boolean matrix, and its elements satisfy     0ij jib b 

or  = 1ij jib b . This paper studies the estimation of a wider class of second-order moments,

namely  2tr B  and  2tr B  
  , where  represents the Hadamard product of the

matrix. Obviously, when the elements of B are all equal to 1, we have

       22 2 2  ,    tr B tr tr B tr
       . (3)

We denote d as the p-dimensional column vector composed of the diagonal elements of the

population covariance matrix and Td as its conjugate transpose, we can get

 2   Ttr B d Bd   . (4)

Next, we estimate  2tr B  
  and Td Bd  .

Denote the sample covariance matrix as
1

1 ( )( )
1

n
T

i i
i

S x x x x
n 

  
  , where

1
/

n

i
i

x x n


 is

the sample mean. Denote Sd as a p-dimensional column vector composed of diagonal

elements of the sample covariance matrix. In classical statistical theory, the sample covariance

matrix S is an unbiased and consistent estimate of  , so the estimator based on the sample

covariance matrix  2tr B S 
  and T

S Sd Bd are used as the estimates of  2tr B  
  and

Td Bd  respectively. Although unbiasedness is not satisfied, the two estimators are still

consistent when the sample size n is large enough. However, in the high-dimensional

small-sample case,  2tr B S 
  and T

S Sd Bd are neither unbiased nor consistent. The

estimation error becomes larger with the increasing dimension. Therefore, it is necessary to
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correct the deviation of the estimation error and then obtain an estimator with better

performance.

Theorem 1: Let 1 2,  , ,    p
nx x x C be the samples coming from the complex Gaussian

distribution  ,  CG   . S is the sample covariance matrix. For any

 { }   :      1     0,  ,   1, ,  ij ij ji ij jiB b b b or b b i j p       , we have

2 T[ ( ) ]
( 1( ) )1 S S
n ntr B S d Bd

n n
  

 


(5)
T 2[ ( ) ]

( )( ) 1 1 S S
n nd Bd tr B S

n n
  

 


which are the unbiased and consistent estimators of the second-order moment  2tr B  
 

and Td Bd  .

Proof 1: Denote     ij p p
S s


 ,    ij p p




  and    ij p p
B b


 . According to the property

of the complex Wishart distribution, we have

2 2 2 2
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, 1 , 1 , 1

1 [ ] ( )
p p p

T
S S ij ii jj ij ij ji ij ii jj

i j i j i j
E d Bd E b s s b b

n
   

  

    

21 1( )( ) ( )T TTd Bd tr B B d Bd tr B
n n           . (7)

Combining the equation (6) and (7), we have
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Therefore,  and  are the unbiased estimators of  2[ ]tr B  and Td Bd  . Besides, by

the law of large numbers, when n , we have 2( ) [( ) ]pE tr B   and

( ) p TE d Bd   , which shows that  ,  are the consistent estimators of the

second-order moment.

According to Theorem 1, the estimation deviations of estimators  2[ ]tr B S and T
S Sd Bd

based on sample covariance matrix are respectively as follows
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When  : 1,  ,    1, ,  ij ij jiB b b b i j p     , the unbiased estimators of 2( )tr  and  2tr 

are
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It is consistent with the results in [20]. According to Theorem 1, the estimation errors of the

estimators 2( )tr S and 2 ( )tr S based on the sample covariance matrix are as follows
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1 ( ) [ ( ) ( )]

( )(
1 

 1 1)
tr S tr S ntr S

n n
    

 
(13)

2 2
2 [ ( ) ( )]

 (
1

1 1( ) )
T
S Sd Bd tr S ntr S

n n
    

 
(14)



45

III. Numerical Simulation

In this section, we verify the performance of the second-order moment estimator proposed in

Theorem1 through numerical simulation. In the experiment, we set the data 1 2,  , ,  nx x x

from complex Gaussian distribution with mean 0. And the population covariance is

   ij  , where   ij t i j   . The dimension is   150p  . The Boolean matrix is a

symmetric matrix with a bandwidth of 70, that is,

  :     0,      70;    1,      70;  ij ij ji ij jiB b b b if i j b b if i j         . When   0.2t  ,

the real values of the second-oder moments  2tr B  
  and Td Bd  are 150.4736 and 446.

When   0.8t  , the true values of the second-order moments are 271.2416 and 446,

respectively.

(a) (b)

Figure 1. When 0.2t  , the box plots of  and  .

Figure 1 describes the values of estimators  and  under different sample sizes. From

Figure 1(a), we can see that the average value of  2tr B  
  is very close to the real value

of the second-order moment 150.4736. Figure 1(b) is the estimated result of Td Bd  . The real

value is 446. It can be seen from Figure 1 that although the values of n are different, the

median always fluctuates slightly around the real value. Moreover, as the sample size increases,
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the estimation error decreases significantly.

(a) (b)

Figure 2. When 0.8t  , the box plots of  and  .

In Figure 2, we increase the correlation coefficient t to 0.8 to verify the effectiveness under a

strong correlation. From the results of the box plot in 2(a), we can see that when n takes

different values, the medians of  2tr B  
  are all around the actual value 271.2416.

Moreover, the variances also decrease rapidly as the sample size increases. The results shown

in Figure 2(b) are similar to those shown in Figure 1(b). Similarly, the estimated mean of

Td Bd  is always close to the actual value of 446. From Figure 1(a)–Figure 2(b), it can be

concluded that the estimators of the two types of second-order moments proposed in this paper

satisfy the unbiasedness. In addition, we compare the proposed unbiased estimator with the

existing estimator based on the sample covariance matrix. Figure 3 reflects the changing trend

of the mean square error of the two types of estimators as the sample size increases.
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(a) (b)

Figure 3. The mean square error of the second-order moment estimator.

As shown in Figure 3(a), SE1 is the estimated mean square error based on the sample

covariance matrix, and UE1 is the estimated mean square error of  . In Figure 3(b), SE2

represents the estimated mean square error of the existing estimator, while UE2 is the

estimated mean square error of  . It is easy to see that the mean square errors of the two types

of estimators are relatively large in the case of small high-dimensional samples. As the sample

size increases, both mean square errors decrease. It shows that the mean square error of the

estimator is greatly affected by the dimension and sample size. Furthermore, the mean square

error of the second-order moment estimator proposed in this paper is significantly smaller than

that of the existing estimator based on the sample covariance matrix mean square error. In

summary, the second-order population moment estimator proposed in this paper conforms to

the statistical characteristics of unbiasedness and consistency. Its performance is significantly

better than the existing estimators in the case of high-dimensional small samples. In addition,

the second-order population estimator proposed in this paper is suitable for any symmetric

Boolean matrix and has a wide range of application prospects.

IV. Conclusion

This paper has studied the problem of estimating the second-order moments related to the
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covariance matrix in high-dimensional data analysis. The existing estimation methods were

directly substituted into the sample covariance matrix. In this paper, using the statistical

properties of the complex Wishart distribution, two types of unbiased estimation of the

second-order population moment were carried out, and the deviations of the existing

estimators were calculated. Numerical simulations showed that, compared with the existing

estimators, the estimators proposed in this paper have the advantages of unbiasedness and a

minor mean square error. These estimators could be used to construct a new likelihood ratio

test statistic and improve the estimation performance of the corresponding algorithm.
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